
34

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

A Systematic Approach to
Analyzing Voting Terminal Event Logs∗

Laurent D. Michel Alexander A. Shvartsman Nikolaj Volgushev

Center for Voting Technology Research and Computer Science & Engineering Department

University of Connecticut, Unit 4155, 371 Fairfield Way, Storrs, CT 06268, USA.

Abstract

This paper presents a systematic approach to automating the analysis of event logs
recorded by the electronic voting tabulators in the course of an election. An attribute
context-free grammar is used to specify the language of the event logs, and to dis-
tinguish compliant event logs (those that adhere to the defined proper conduct of an
election) and non-compliant logs (those that deviate from the expected sequence of
events). The attributes provide additional means for semantic analysis of the event
logs by enforcing constraints on the timing of events and repetitions of events. The
system is implemented with the help of commodity tools for lexical analysis and pars-
ing of the logs. The system was rigorously tested against several thousand event logs
collected in real elections in the State of Connecticut. The approach based on an at-
tribute grammar proved to be superior to a previous approach that used state machine
specifications. The new system is substantially easier to refine and maintain due to
the very intuitive top-down specification. An unexpected benefit is the discovery of
revealing and previously unknown deficiencies and defects in the event log recording
systems of a widely used optical scan tabulator.

1 Introduction

Auditability of electronic voting equipment used in elections emerged in recent years as an
important requirement in ensuring the integrity of the electoral process. Election audits may
encompass a wide set of activities ranging from the physical or electronic examination of the
voting equipment to independent retabulation of election results in the jurisdictions that use
paper ballots. While no single auditing activity may be able to answer all questions regarding
the proper conduct of an election, it is desirable to have a portfolio of tools and methods
for auditing various aspects of an election. Among the important questions that should
be posed in any audit is whether a particular voting terminal was used in accordance with
established procedures and whether its behavior deviated from the expected. To answer
these questions it is instrumental to analyze the event logs generated by most electronic
voting terminals.

An earlier work [1] pursued a similar goal for optical scan voting terminals, resulting
in a tool that was used in several elections in the State of Connecticut. An interesting

∗Research funded in part by the Office of the Secretary of the State of Connecticut and a grant from the
U.S. Election Assistance Commission.

1

https://www.usenix.org/jets/issues/0202

35

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

by-product of that development was the identification of several defects and deficiencies in
the event logging system embedded in the voting terminal. The tool was based on a state
transition diagram representation of the way that the voting terminal generates and records
events. The state diagram was enriched by rules that captured the expected timed sequences
of events that would be consistent with the proper conduct of an election. The system was
successfully used to analyze event logs collected from voting terminals used in real elections.
This led to several findings surrounding the electoral processes in which actual behaviors
did not fully adhere to the prescribed rules and procedures, and incidentally this helped
improve the training of election workers. (We note that no deviations from the expected
processes could be attributed to malicious actions or severe errors in the voting terminal
implementation.)

Yet, the tool [1] has its Achilles’ heel as it proved difficult to extend and maintain. Over
time, the state transition diagram became very complex due to the sequence of extensions
needed to model various aspects of the electoral process, and to identify commonly occurring
deviations from the process. This complexity made it difficult to revise the implementation
as the necessarily low-level modeling of events and state transitions obscured the high-
level model of the election process, resulting in a system where localized changes caused
unexpected and broad side-effects. Finally, a clear and meaningful reporting of the analysis
results was difficult precisely because of the obfuscation of the overall electoral process. The
approach outlined in this paper is offered as a solution to these difficulties and is focused
on flexibility, extensibility, and maintainability.

The paper focuses on a specific voting terminal: the Premier’s Accu-Vote Optical Scan
(AV-OS) terminal that is used in a large number of counties nationwide. Specifically, we
present a part of the post-election audit process that deals with the analysis of the event
logs. Nonetheless, it is worth pointing out that the results directly generalize to any other
voting terminals that produce event logs as well as variations around the electoral process.
The event log of the voting terminal is stored in a removable memory card [7]. While the
voting terminal hardware may be identical across many precincts deploying AV-OS systems,
the contents of the memory cards differ depending on the specific elections in individual
precincts. The event log on a memory card contains a history of the actions performed by
the voting terminal(s) using the card since it was programmed for the specific precinct.

Event logs are analyzed to determine whether the prescribed election procedure was
followed by the poll workers and whether the tabulator operated as expected. (The election
procedures for the State of Connecticut are found in [14, 12].) Since it is impossible to
verify the actual proceedings, we analyze their traces as recorded in the event logs. A
precondition for an accurate log analysis is that the event log is a true, complete, and
unambiguous reflection of the events that have occurred during the election process. In the
case of the AV-OS event logging system, this is unfortunately not achievable as the event
logs may be incomplete or ambiguous. For instance, when several totals reports are printed
consecutively, only the first one is logged. This logging deficiency, and others, are discussed
in [1]. Additionally, there are several defects in the event logging system that further reduce
the accuracy of the logs. Accordingly, we distinguish the probable causes of a given event
log deviation. The system detects two different types of deviations: those caused by system
malfunction and those resulting from operator errors, e.g., a failure of the poll workers to
follow the prescribed procedure.

Note that the deficiency of the AV-OS logging module makes it possible for an operator
to conceal invalid behaviors as system malfunctions thereby reducing the usefulness of the
logs. Detecting such involved manipulation goes beyond the scope of this paper.

2

https://www.usenix.org/jets/issues/0202

36

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

Our Contributions. The contributions presented in this paper are as follows.

(1) We specify an event log language in terms of an annotated context-free grammar. The
language models the event sequences that are compliant with the proper electoral procedures
as well as deviant sequences.

(2) We present a multi-layered compliance analysis that enhances the reporting of deviations.
By defining different levels of non-compliance we can classify event sequences with more
precision. Rather than simply reporting that a deviation has been observed, we report the
class and severity of the deviation.

(3) We use a familiar and accessible modeling medium—context-free grammars—to describe
and implement the forensics tool. Context-free grammars are ubiquitous, transparent, easily
modifiable and completely extensible, making it a convenient tool for advanced forensics in
the hands of professionals. We follow a standard implementation design based on Bison [5],
an established parser generator tool.

(4) We implement a detailed notification system recognizing a wider variety of deviations,
and capable of issuing concise, appropriate, ranked notifications, thus reducing the required
amount of manual analysis. These notifications are understandable by anyone with a knowl-
edge of the election process.

(5) The proposed analysis tool features multiple layers of usage. While refining the underly-
ing grammar requires a technical background (context-free grammars and Bison), using the
diagnostic component does not. In particular, one can imagine a Political Science researcher
using our tool to data-mine event logs of past elections. We also note that the meaning of
the grammar can be understood by an election official with just a brief introduction by a
specialist.

(6) An inventory of previously unknown deficiencies and defects in the AV-OS logging system
surfaced as a result of the systematic formalization of the compliant and non-compliant event
traces. In particular we observe a) several deficiencies in the logging of specific events, b) a
defect that results in a failure to clear the election counters, and c) a defect that creates an
ambiguity as whether the first cast ballot was counted.

(7) We performed an analysis on a large archive of log files (over 1,000 files). We used
the system to analyze the same collection of log files as in [1]; our new analysis compares
favorably with respect to [1].

We emphasize the importance of including the event log analysis as a part of a post-
election audit of technology [2]. A careful examination of timestamped events reveals infor-
mation about the procedures followed during an election process, including the information
suggesting improper conduct of an election or malfunction of voting terminals.

Lastly, we observe that while the presented tool is geared specifically towards AV-OS,
our methodology emphasizes modifiability. We chose a context-free grammar representation,
as opposed to regular expressions or grammars, or a finite state machine model, because
its superior expressive power enables us to maintain the desired level of modifiability at a
sufficiently high level of abstraction.

It is perhaps valuable to point out that, at least in the case of the AV-OS, the language
of traces could be and indeed was modeled with a (counting) finite-state machine. Yet, as
the set of deviant behaviors grows, the finite-state machine specification quickly becomes
large and cumbersome which significantly hampers the ability to maintain it. Trying to
model the language by means of a regular grammar is also problematic: the (left or right)
linearity of regular grammars do not allow one to model the language in a hierarchical

3

https://www.usenix.org/jets/issues/0202

37

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

top-down fashion, and to model deviant behaviors requires the introduction of numerous
“transitional” non-terminals that obfuscate the structure of logs. On the contrary, a context-
free grammar specification provides a natural top-down definition that is understandable to
non-specialists (upon a brief introduction), and is robust in the sense that it elegantly adapts
to new deviant traces and remains highly maintainable.

The election processes are fundamentally similar across states; we anticipate that the
grammar can be readily modified and/or extended to capture the procedural specifics of
a given state election and a given specific voting equipment, provided that the equipment
incorporates a temporal event logging system.

Disclaimer. In this work, the AV-OS terminal was treated as a “black box.” All the results
are obtained through testing using the functions provided by the machine, and through
observations of how the terminals’ use and behavior is recorded in its event logs.

Related Work. Numerous research papers have been published on the topic of log analysis,
both in the area of election audits, as well as in other digital systems areas [1, 3, 4, 18, 15,
8, 16]. In [16] Wallach et al. propose the generalized log analysis tool Querifier used to
identify tampering in secure logs. A high-level framework for log systems is proposed in [9],
emphasizing the importance of the completeness and exactness of the log files that determine
the effectiveness of any potential log analysis system. This concern is shared across several
papers dealing with election log analysis [1, 3, 18]. Baxter et al. [3] developed an automated
analysis of audit log files produced by ES&S iVotronic to detect vote miscounts, machines
with hardware problems, and polling locations with long lines. Audit logs have also been
used to analyse elections for operator misconduct or process deviation in [1] with the focus
on AV-OS. Further, Wagner gave an extensive study on the audit logs produced by six voting
terminals approved for use in elections in California in [18]. The study examined the support
provided by the various terminals for collecting, managing, and analysing the audit log files.
The study established several deficiencies across all six systems, in particular in providing
third party access to the files. The works [1, 3, 18] underlined that vendors ought to provide
a rigorous documentation of the audit log features, including the structure of the logs.

Document Organization. Section 2 describes the election and audit process. Section 3
discusses the language of event logs. Section 4 contains the models and definitions. Section 5
presents the modeling of the election traces. Section 6 details the approach, its implementa-
tion and discusses our findings. Section 7 discusses the logging system deficiencies. Section 8
presents the results of using our system. We conclude with a discussion in Section 9.

2 The Election Process and Audits

Here we describes the election process and election audits. The model given here is specific
to the State of Connecticut, but it is easy to see that it is generalizable to other jurisdictions.

Before Election Day: Preparations begin at least 30 days prior to the election day. The
memory cards of AV-OS terminals are programmed for each precinct. The voting terminals
also undergo maintenance and testing to detect any malfunctions and to help prevent failures
during the election. The memory cards are programmed by a service company contracted by
the State. The programming normally starts three weeks before the election and completes
in under 10 days in most cases. Four programmed cards then are securely transported to
each polling location. When the cards arrive, usually one to two weeks before the election,
officials conduct pre-election tests on all the voting terminals with all the cards. Then the

4

https://www.usenix.org/jets/issues/0202

38

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

officials randomly select two cards, one to be used in the election and and the other in the
back-up terminal. The two selected cards are sealed in their respective voting terminals and
are set for election; no further actions must be performed until the election day.

On Election Day: The election day imposes strict time constraints on when and what
actions are performed. The summary of the activities is as follows.

Before The Polls Open: On the morning of the election day, from 5:00 to 6:00 am before
the polls open, the election officials verify the seals on each AV-OS terminal, turn it on, and
confirm that the machines are properly initialized. This includes making sure all candidate
counters are set to zero, by printing a Zero Totals Report.

While The Polls Are Open: Each eligible voter is entitled to a single ballot that s/he
receives once they are verified against the voter registration database. Once the voter fills
the ballot s/he feeds the ballot to the optical scanner of AV-OS.

After The Polls Close: After the polls close at 8:00 pm the officials print the totals
report directly from the AV-OS terminal (the event log can also be printed at this point).
The results are delivered to the central tabulation process where the totals are computed
and reported to the Secretary of the State Office (SOTS) for certification. In jurisdictions
that use automated central tabulation, the results can be electronically transferred to the
central server either by uploaded directly from AV-OS terminals, or by transferring the cards
to the central location for uploading to the server (this is not used in Connecticut).

Audits: Three independent audits are performed for each election (in Connecticut).
The Pre-Election Technical Audit involves the examination of one randomly chosen mem-

ory card from the four cards supplied to each district. Depending on the election, the audit
typically covers at least 25% of the districts.

The Hand Count Audit is a post-election audit that consists of complete manual counting
of a subset of races in 10% of precincts randomly selected after each election.

The Post-Election Technical Audit involves the examination of the memory cards used
in the election, typically covering up to 30% of the districts.

The technical audits include examining the cards for proper programming and absence
of extraneous or unexpected executable code [7]. As the audit results become available,
SOTS Office follows up with the districts in cases that raise questions about malfunctions
or potential deviations from the proper election process. The results of the follow up are
also used to refine the audit process. Our current work deals with a detailed analysis of the
event logs collected from the voting terminals.

3 The Language of Event Logs and the Previous System

The AV-OS voting terminal incorporates an event logging feature that records selected events
and associated timestamps in an internal log. The log can be printed or extracted for
analysis. The AV-OS documentation focuses on the meaning of individual events that are
logged, but it does not provide a definition of the structure of the event sequences that are
to be considered correct with respect to a properly executed electoral process (this is in
part sensible, given that jurisdictions may have different expectations of what constitutes
a proper process). For these reasons there is a need to reconcile the event logging features
of the voting terminal with an externally-specified definition of a proper electoral process.
Thus any model, including the finite state machine model in [1] and the model in the current
work, that aims to describe the language of valid log sequences is a) an approximation, and
b) designed empirically. The construction of such models requires that event log sequences

5

https://www.usenix.org/jets/issues/0202

39

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

are manually examined and interpreted. Furthermore, the language of the model needs
to be routinely extended and revised to include all observed event log sequences (whether
they are representative of expected proper sequences or not). Even with a model that is
nearly complete, it is still expected that certain event log sequences may be flagged as invalid
without necessarily deviating from the prescribed election procedures. If such a log sequence
is encountered, the language of the model needs to be refined to accommodate the newly
discovered behavior. Consequently, refining of the model is crucial.

The previous analysis tool [1] classifies log files as normal, i.e., showing a sequence
of events expected within a normal course of an election, or as irregular, i.e., containing
unexpected events, unusual sequences of events, and unanticipated timing of events. The
system is modeled as a finite state machine that simulates the states that the AV-OS terminal
may enter during an election process.

Over the course of several audits, two major drawbacks have become apparent. Firstly,
the finite state model proved to be difficult to extend and modify. Secondly, invalid log
sequences that feature more involved deviations from the norm challenge low-level state
machine implementations which cannot produce appropriate and concise notifications (we
provide a concrete example in Section 7). Instead of recognizing the main cause of the
irregularity, the tool often reports only on its secondary manifestations. This increases the
need for substantial additional manual analysis.

To provide a better system that issues precise and meaningful notifications, a mapping
between a sizable known set of irregularities and notifications needs to be established. Ex-
tending the state machine underlying [1] would lead to a substantial increase in its size.
The inherently low-level abstraction of the state machine obscures the higher-level, logical
view of the expected event sequencing. Finally, the previous tool does not provide an assess-
ment of the severity of deviations. A high number of notifications (e.g., the several hundred
event logs examined after the 2012 election generated over 1,000 notifications), diminishes
the benefit of automation when the system is unable to identify event sequences that truly
deserve to be manually examined. To be effective, the systems must be able to assign to
each notification a severity ranking and meaningfully identify the source of the deviations.

4 Models and Definitions

The section details the models underlying the analysis tool and the terminology for the
event log analysis. It defines the notions of an election trace and election trace compliance
captured through an attributed grammar.

Event Log Terminology. A log file is the data recorded on a memory card during the
election process and it contains a sequence of entries of the types event, time, and date.
Event entries are logged when certain events occur. A restart of the machine, for example,
leads to a corresponding event entry. Time and date entries are associated with event entries
and specify the time at which the event is logged. A trace refers to the sequence of entries
contained in an event log.

Attributed Grammar for Traces. The trace language is defined in terms of a context-
free grammar (CFG) [6] given as a quadruple G = (V,Σ, P, Start). V is a finite set called
the non-terminals or variables; (Capitalized below). Σ is a finite alphabet, disjoint from V ,
called the terminals; (italicized strings below). P is a finite set of productions or rules, with
each production written as B → α, where B is a variable, and α is a string from (V ∪ Σ)∗;
Lastly, Start ∈ V is the start symbol.

6

https://www.usenix.org/jets/issues/0202

40

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

A non-terminal B derives a string w ∈ Σ*, written B
∗⇒ w if there is a sequence of

productions in P by which B can be transformed into w, i.e., B ⇒ α1 ⇒ α2 ⇒ · · · ⇒ w
where each αi is a string of grammatical symbol and ⇒ denotes the one-step expansion in
the grammar. The language defined by G is the set of all strings (in our case traces) that can
be derived in G. An attributed grammar [11] M is a CFG G augmented with a finite set A of
typed attributes that represent semantic values associated to the corresponding grammatical
symbol. Semantic rules are used to define the semantic attribute of a non-terminal as a
function of the semantic values of the symbols appearing in its defining productions [17]. A
string in the language yields a parse tree, where non-terminals are internal nodes, terminals
are the leaf-nodes, and productions determine the parse tree topology.

The attributed grammar presented in this paper models the language of the election
traces represented by event logs. The non-terminals of the grammar models the stages of
the election. The terminals of the grammar (the alphabet) are the event entries. Finally,
the time and date entries are used to initialize attributes associated with the terminals at
the leaf-nodes, with the rest of the attributes derived by traversing parse trees.

Election Traces and Compliance. Let the language Lall be the set of all traces that
are known to be produced by the event logging system. This language is defined on the
basis of our prior work [1], and by consulting the AV-OS documentation and by hands-on
experimentation with the AV-OS voting terminal. The attributed grammar must be able to
generate all traces in Lall.

We partition Lall into two subsets, Lsc ∪ Lsnc. Lsc contains all syntactically compliant
traces. A trace is syntactically compliant, if its event entries occur in the expected order,
and at an appropriate stage in the election process. The determination of compliance is
made on the basis of the process reviewed in Section 2, and specifically by adhering to the
official requirements [14, 12] that impose timing and sequencing constraints. Lsnc contains
all syntactically non-compliant traces. These traces are known syntactic deviations (based
on [1] and experimentation) that need to trigger notifications when recognized by the parser.

Apart from syntactic compliance, we also consider semantic compliance. A trace is
semantically compliant, if its event entries occur a permissible number of times, and within
the correct time frame. To establish the semantic compliance of a trace, semantic analysis is
performed by imposing additional constraints whose truth values are expressed by semantic
attributes and their defining equations over attributes in A. We present the constraints and
attributes in Section 6.1. Semantic analysis is performed on all traces in Lall.

We define a trace as compliant, iff it is syntactically and semantically compliant. We let
the language Lc be the language of all compliant election traces. A trace s ∈ Lc iff s ∈ Lsc

and s is semantically compliant. We define all traces not in Lc to be deviations.
Finally, it is possible to encounter traces that are not in Lall when (1) an unrecog-

nized trace may be caused by the voting terminal malfunction (or an error in its software),
(2) memory card corruption may cause errors in the stored trace, and (3) a previously
unknown trace pattern is encountered (e.g., because voting terminal documentation is in-
complete or because this pattern was never seen before), in which case the definition of Lall

needs to be extended to account for such trace patterns. We define Lu to be the set of all
traces that are not in Lall, or in other words, Lu is the complement of Lall with respect to
the (unknown) set of traces that can ever be encountered.

Analysis Flow. Given a grammar G and its attribute system A that generates Lall, the
analysis of a trace s is as follows. If Start ̸ ∗⇒ s (trace s cannot be derived), then s ∈ Lu, and
it is neither a compliant trace, nor a known invalid deviation. No further automated analysis

7

https://www.usenix.org/jets/issues/0202

41

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

derive s in G
fail success

s /∈ Lall, s ∈ Lu

unknown deviation

notifications issued
during parsing?

yes, s ∈ Lsnc no, s ∈ Lsc

semantic analysisfail

pass

semantic analysisfail

pass

s /∈ Lc,
syntactic
deviation

s /∈ Lc,
syntactic,
semantic
deviation

s ∈ Lc

compliant

s /∈ Lc

semantic
deviation

Figure 1: Analysis Flow

is performed. Such a trace needs to be analyzed manually (in the sequel we observe that this

happens very infrequently). If Start
∗⇒ s, two cases are possible: (i) during the derivation

one or more notifications are issued, indicating that s ∈ Lsnc, or (ii) no notifications are
issued, indicating that s ∈ Lsc and s denotes a validly ordered sequence of events. Finally,
the trace s undergoes semantic analysis. If any deviations in the timing, or the number of
occurrences of events are observed, then s /∈ Lc, and appropriate notifications are issued. If
s does not induce any notifications, it is a compliant election trace, i.e., s ∈ Lc.

5 Defining the Grammar

The grammar for the language of event traces was developed through an iterative process.
Based on our analysis, we include all traces that the voting terminal is able to produce, while
delineating between syntactically compliant and non-compliant traces. Regression testing
is performed against a known collection of traces. When a trace is found that cannot be
generated by the grammar, it is examined manually. If the trace adheres to the requirements
[14, 12], the grammar is extended to allow it. If it does not, analysis is performed on whether
it is a valid trace per tabulator documentation. If it is, the grammar is again appropriately
extended. Otherwise analysis is performed to understand the circumstances that lead to this
kind of trace. If the behavior cannot be reproduced, we suspect a tabulator malfunction,
else we conclude that there is a defect in the tabulator logging system. Decisions on whether
to extend the grammar is made on a case-by-case basis.

5.1 Events Recorded in the Log: the Terminals of the Grammar

Table 1 conveys the event names as they are recorded by AV-OS in the log file, with an
explanation. Recall that the log file contains event, date and time entries. All event entries
in the log are associated with the time entry indicating when the event occurs. Some event
entries, i.e., initialized and session start are also followed by a date entry. Each event
entry in Table 1 corresponds to a terminal symbol in the alphabet of the grammar given in
Figure 2. In the grammar specification we represent each terminal symbol as the lower-case
italicized string corresponding to the event name.

8

https://www.usenix.org/jets/issues/0202

42

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

The temporal information associated with the events, i.e., time and date, is not repre-
sented in the (non-attributed) grammar. This information is filtered out during the lexical
analysis prior to parsing a trace, and is preserved and associated with each event in the
trace as its time attribute. We discuss the processing of these attributes in Section 6.1.

Event Name Event Description

AUDIT REPORT Appears when an Audit Report is printed.
BAL COUNT END After the ender card is inserted in an election, this action appears.
BAL COUNT START Appears when the first ballot is cast in an election.
BAL TEST START Records the beginning of a test election.
CLEAR COUNTERS Appears when the counters are set to zero.
COM ERROR A communication error between the machine and the GEMS system.
COUNT RESTARTED The machine is reset during an election, after at least one ballot is cast.
DOWNLOAD END Records the end of data load to the card when using GEMS.
DOWNLOAD START Records the start of data load to the card when using GEMS.
DUPLICATE CARD Records that a card duplication occurs (in the master card and the copy).
ENDER CARD Records when an ender card is inserted, signifying the end of an election.
INITIALIZED The 1st action in the Event Log; this action records date.
MEM CARD RESET The card is returned to ‘not set’ status, if it was set for election.
OVERRIDE Records an override by a poll worker. Used for overvoted ballots in CT.
POWER FAIL Appears if the machine is unplugged or a power failure occurs.
PREP FOR ELECT Recorded when the card is set for election.
SESSION START Date action. Appears every time you reset the machine.
TOTALS REPORT Appears when a Totals Report is printed.
UNVOTED BAL TST Appears when an unvoted ballot test is performed.
UPLOAD END When an upload is completed, this action is recorded.
UPLOAD ERROR Appears when an upload error is detected.
UPLOAD STARTED Marks the beginning of an upload.
VOTED BAL TEST Appears when an voted ballot test is performed.
ZERO TOT REPORT Appears when a Zero Totals Report is printed.

Table 1: Action Types

5.2 Election Trace Grammar: Non-terminals and Productions

The context-free grammar in Figure 2 defines the syntactic structure of all election traces
that can be produced by the AV-OS terminal during the election process, from the time
a card is programmed, until the election is closed and the results are printed. The gram-
mar is designed to generate the language Lall, that is, all election traces that, given the
current understanding, can be produced by interacting with the AV-OS terminal. Recall
that Lall = Lsc ∪ Lsnc, where Lsc are the syntactically compliant traces and Lsnc are the
syntactically non-compliant traces. The productions that are involved in generating any
trace in Lsnc account for known, non-compliant behavior and issue notifications whenever
they are triggered during the parsing process.

The productions in the grammar are given in extended Backus-Naur Form (readers
familiar with grammars should be able to read it). Reiterating briefly, the non-terminals
are given as Capitalized strings and the terminals are the italicized strings. Each production
has the form “NonTerminal = right-hand-side”, where the right-hand-side is a sequence of
terminals and non-terminals. The notation “A → rhs1 | rhs2” is a shorthand for two
production, “A → rhs1” and “A → rhs2”. Zero or one repetition of an expression is denoted

9

https://www.usenix.org/jets/issues/0202

43

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

1: Start → Init , TestPrepElect?
2: | AbortedInit;

3: Init → Initialized , Downloadstart+, Clearcounters , Downloadend

4: | Initialized , Downloadstart+, Clearcounters , Prepforelect;

5: AbortedInit → Initialized , Downloadstart∗;

6: TestPrepElect → (Test | Test , Prep | Test , Prep , Elect), CardReset ?;

7: CardReset → Memreset , TestPrepElect;

8: Test → (Votedbaltest | Unvotedbaltest | Counttestbal)∗;

9: Counttestbal → Clearcounters , Zerototsreport?, Balteststart?, Override∗,
Endercard , Balteststart?, Printtotals∗;

10: Prep → Prepforelect , Clearcounters
11: | Prepforelect;

12: Elect → BeforeValBalCast
13: | BeforeValBalCast , (Balcountstart , Countrestart)∗

14: | BeforeValBalCast , (Balcountstart , Countrestart)∗, Endercard ,
Balcountstart , Balcountend , Printtotals∗

15: | BeforeValBalCast , (Balcountstart | Override), AcceptingMoreBallots ,
Endercard , Balcountend , Printtotals∗;

16: BeforeValBalCast → Zerototsreport , (Zerototsreport | Balcountstart Zerototsreport)∗

17: AcceptingMoreBallots → (Countrestart | Countrestart Balcountstart | Override)∗;
18: Global → audit report | com error | duplicate card | power fail | mem overflow | session start ;

19: Balcountend → Global∗, bal count end ;
20: Balcountstart → Global∗, bal count start

| Global∗, bal count start , bal count start ;
21: Balteststart → Global∗, bal test start ;
22: Clearcounters → Global∗, clear counters ;
23: Countrestart → Global∗, count restarted ;
24: Downloadend → Global∗, download end ;
25: Downloadstart → Global∗, download start ;
26: Endercard → Global∗, ender card ;
27: Initialized → Global∗, initialized ;
28: Memreset → Global∗, mem card reset ;
29: Override → Global∗, override ;
30: Prepforelect → Global∗, prep for elect ;
31: Printtotals → Global∗, totals report ;
32: Unvotedbaltest → Global∗, unvoted bal test ;
33: Votedbaltest → Global∗, voted bal test ;
34: Zerototsreport → Global∗, zero tot report ;

Figure 2: Context-free grammar for AV-OS event traces

by the post-fix “?”, zero or more repetitions is denoted by the post-fix “*”, and one or more
repetitions is denoted by the post-fix “+”.

To implement the notification of deviant traces, we rely on Bison [5] actions that execute
an arbitrary piece of C++ code when a grammatical production characterizing a deviation is
reduced. Each paragraph below describes a non-terminal, the productions where it appears
as the left-hand-side, and the relationship to the election traces. Rule numbers refer to the
line numbers in Figure 2.

Start. This is the start symbol of the grammar. An election trace can either have a
completed Initialization stage followed by an optional sequence of Test Elections, Preparing
for an Election, and Elections (rule 1), or an aborted Initialization stage, in which case no
further events can be recorded in the log file (rule 2).

10

https://www.usenix.org/jets/issues/0202

44

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

Init. During the Initialization stage a memory card is programmed. Rule 3 represents
the expected sequence of events: an initialized event (dated), one or more download

start events, a clear counters indicating that all counters have been zeroed, and finally
a download end event, indicating that the card has been successfully programmed with
the data for the selected election. Additionally, it has been observed in at least one trace
that a prep for elect was substituted for the download end event. This invalid behavior
is accounted for by rule 4. A corresponding notification is issued. (This newly discovered
logging deficiencies is discussed later.)

AbortedInit. Traces have been encountered where an initialized event is followed by
zero or more download start events. This sequence occurs when a card is not successfully
programmed. E.g., if a card’s memory is cleared through the supervisor function at the
precinct and reprogrammed (without connecting to an election management system), the
download process is aborted and no download end event is recorded. A notification is
issued if rule 5 is triggered since this sequence indicates an incorrect procedure.

TestPrepElect. Production rule 6 encompasses all traces that can be generated after the
Initialization stage, that is, after the card has been successfully programmed. The expected
course of events here is a sequence of test-election related events accounted for by the non-
terminal Test, followed by the card being prepared for the election mode, accounted for by
the non-terminal Prep, and lastly events related to the actual election process, accounted for
by the non-terminal Elect. Note that the production rule includes the following disjunction:
(Test | Test, Prep | Test, Prep, Elect). This disjunction accounts for the cards that have
not been used in the actual election process. These cards only show events related to test
elections and possibly preparing for the election, but no election events. In this case a
notification is issued, but only for the post-election audit because in this case it is expected
that the trace shows an election. Lastly, it is possible to reset a memory card to the
pre-election stage through the supervisor functions at any point after the card has been
programmed. This is accounted for by the optional CardReset non-terminal. However,
resetting the card is not a compliant behavior and thus it is associated with a notification.

CardReset. In case a card is reset during the election stage a mem card reset event is
recorded and the card returns to the pre-election stage. At this point more test elections
can be run, the card can be prepared for election and subsequently elections can be run.

Test. This non-terminal derives election traces produced during the pre-election stage. At
this stage, voted and unvoted ballots can be tested as well as test election performed. Events
logged during a test election are accounted for by the Counttestbal non-terminal. All of
these events are optional: it is admissible to skip this stage entirely and simply proceed to
preparing the card to the election.

Counttestbal. This corresponds to the events produced if a test election is run. The
procedure and traces recorded in the event log are similar to those of an actual election. A
test election starts with the counters being cleared, in which case a clear counters event
is recorded. The user then has the option to print a zero totals report. If the user chooses
to do so, a zero tot report appears in the log. Further a bal test start is recorded once
the first valid ballot is cast. Overrides can be performed, with each Override recorded in
the log. The test election can be ended by inserting an enders card, which is recorded, or
by turning the machine off, in which case only a session start event is recorded. After
an ender card is cast the user has the option to print a totals report. If an ender card is
inserted before any other ballots are cast the system records an ender card event followed
by a bal test start event. (This is a known defect in the AV-OS logging system [1].)

11

https://www.usenix.org/jets/issues/0202

45

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

Prep. Before an election can be run the card needs to be set into election mode. In the
pre-election stage the user has the option to prepare for election. If that option is chosen,
a prep for elect event is logged. All the counters are supposed to be zeroed and a clear

counters event recorded. A notification is issued if a clear counters event is missing,
which is accounted for by rule 11.

Elect. This non-terminal accounts for the events logged during the actual election stage.
Rule 15 describes the expected sequence of events. After a card is prepared for election,
the machine needs to be restarted. Upon restarting a zero totals report is printed. In this
stage, before any valid ballot is cast, a restart of the system always yields another zero tot

report event. If the first ballot cast is not a valid ballot, e.g., a ballot not recognized by the
machine, a bal count start event is logged. However, since the counters aren’t updated,
upon restarting the machine another zero totals report is printed and logged. This behavior
is accounted for by the BeforeValBalCast non-terminal. After the first valid ballot is cast, or
an override is issued, the system continues to accept ballots until the ender card is inserted.
This stage is accounted for by the AcceptingMoreBallots non-terminal. If the machine is
restarted in this stage, a count restarted event is recorded. Inserting the ender card ends
the election. An ender card event followed by a bal count end event is recorded. A totals
report is printed and the user is asked if the election should be closed. Shutting off the
machine without selecting an option at this point leads to a known error [1]: the totals

report event is not logged even though a totals report has in fact been printed. Restarting
the machine at this stage results in another totals report printed and logged. Rules 12 and
13 account for cards on which an election has been started but not successfully completed.
Notification are issued when these rules are triggered. Rule 14 accounts for the scenario in
which the ender card is inserted before any other valid ballots are cast.

BeforeValBalCast. After a card has been prepared for election but no valid ballot has
been cast yet, restarting the machine results in a zero totals report. If any invalid ballot is
cast at this stage a bal count start event is logged.

AcceptingMoreBallots. After the first valid ballot has been cast but the ender card has
not yet been inserted, the machine accepts ballots. A restart in this stage results in a count

restarted event. If a new ballot is cast, a bal count start event is logged.

Global. This non-terminal can yield any global event terminal, i.e., an event that can
occur at any stage in the election process. Note that production rules 19 through 34 simply
account for the fact that a global event can occur at any stage of the election process by
prefixing any non-global event with a sequence of zero to many global events.

6 Event Log Analysis

Now we present the semantic analysis and the notification system.

6.1 Attributes and Semantic Analysis

The analysis is performed on the abstract syntax tree (AST) that is constructed during the
parsing of a trace. The leaf nodes of the tree correspond to the terminals of the grammar in
Figure 2, which in turn correspond to the event entries in election traces. The internal nodes
of the tree correspond to stages in the election process, such as the test election stage, prepare
for election stage, etc. Each node in the AST has a set of attributes. The semantic analysis
consists of verifying that specified events lie within a permissible time frame, and occurred a

12

https://www.usenix.org/jets/issues/0202

46

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

Attribute Event Scope
#S session start All
#MR mem card reset All
#PF power fail All
#CE com error All
#DS download start Init
#BT bal test start Test
#PT totals report Test, Elect
#ZR zero tot report Elect
#CR count restarted Elect

Figure 3: Multiplicity Attributes

Attribute Event Scope

TI initialized Init
TBT bal test start Test
TPR prep for elect Prep
TZR zero tot report Elect
TBE bal count end Elect

Figure 4: Time Stamp Attributes

permissible number of times. These constraints are expressed through the attributes of the
tree nodes. Attributes are synthesized throughout the tree, i.e., derived by a parent node
from its children in a bottom-up fashion. There are three types of attributes: time-stamp,
multiplicity, and constraint attributes. A time-stamp attribute of some node D in the AST
corresponds to the time-stamp of a specified leaf node in the subtree of D. A multiplicity
attribute of node D in the AST corresponds to the number of times some specified node E
occurs in the subtree of D. A constraint attribute of node D in the AST corresponds to
a multiplicity or time stamp constraint defined over the attributes of the subtree of D. A
constraint attribute can be defined over the attributes of a specific node in the tree, or over
the attributes of several nodes in the tree.

Three components contribute to the semantic analysis: nodes, attributes, and constraints.

Nodes. There are seven different types of nodes in the AST. The leaf nodes of the AST
are defined as event nodes, and as mentioned previously, correspond to the terminals of the
grammar. The AST expresses the grouping of events into election stages through node hier-
archy. The internal nodes Init, Test, Prep, and Elect correspond to the four different stages
of the election process, namely programming the card, the pre-election test mode, preparing
for an election, and the actual election stage. Their descendant nodes correspond to the
events that are recorded during a given stage in the election process. The TestPrepElect
node expresses the fact that the Test, Prep, and Elect nodes are a unit. Every time a mem-
ory card is reset, the card returns to the pre-election mode. From there the pre-election,
prepare for election, and election stages can be repeated. Each such repetition corresponds
to a TestPrepElect node. Finally, the All node is the root node of the tree.

Attributes. Figure 3 defines multiplicity attributes, and Figure 4 defines the time-stamp
attributes. The Attribute column gives the names of the attributes, the Event column shows
the event with which the attribute is associated, and the Scope column shows over which
subtree the attribute is defined, e.g., the scope of the attribute. If, for example, the Scope
column has the value Test, the attribute is defined over each subtree with root node Test.

Attributes are defined inductively over the nodes of the tree. A multiplicity attribute is
a single integer. Given a multiplicity attribute #M that tracks the multiplicity of event e
in the subtree with root node R, attribute #M is defined as follows.

R.#M =

∑
c∈children(R) c.#M if R is an internal node,

1 if R is a leaf, and corresponds to e,
0 otherwise

A time-stamp attribute is a set of time-stamps. Given a time-stamp attribute TI that
tracks the time stamps of all occurrences of event e in the subtree with root node R, attribute
TI has the following definition.

13

https://www.usenix.org/jets/issues/0202

47

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

R.TI =

∪
c∈children(R) c.TI if R is an internal node,

{e.timestamp} if R is a leaf, and corresponds to e,
∅ otherwise

Constraints. A constraint attribute is a boolean predicate defined over the time stamp and
multiplicity attributes of the nodes. Currently we use two types of constraint attributes:
multiplicity constraint attributes and time-stamp constraint attributes. A multiplicity con-
straint attribute PM of node N defined over multiplicity attribute #X of node N has the
following general form:

N.PM = (r1 < N.#X < r2)

where r1 is the lower bound on the number of occurrences, and r2 is the upper bound.
A time-stamp constraint attribute PT of node N is defined over its time-stamp attribute

TX as follows:
N.PT = (∀t ∈ N.TX, ts1 < t < ts2)

where ts1 is the earliest date and time on which the tracked event can occur, and ts2 is the
latest date and time. Should a constraint attribute evaluate to false, a notification is issued
stating that a semantic constraint has been violated.

We note that the time-stamp constraints are crucial to the analysis due to the time-
sensitive nature of the election. We build on the foundation for the temporal analysis of
election traces given in [1]; following that work we next provide a detailed example of the
temporal restrictions on the election process.

The election day order imposes time limitations on when and what actions can be per-
formed. According to the election process we expect to see the following: from 5:00 to
6:00 AM election officials should turn on the AV-OS terminal to be used in the election and
produce a zero totals report. Thus we expect to see a session start (session start) event
about an hour before the polls open, followed by a zero totals report (zero tot report)
event. We expect to see the ballot count start (bal count start) event after the time the
polls open. This can be followed by a sequence of override (override) events. Finally, by
the time the polls close, we expect to see the ender card (ender card) event, followed by a
ballot count end (bal count end) and a totals report (totals report) events.

Example AST. Figure 5 shows an example trace, and the resultant AST is given in Fig-
ure 6. In the interest of space we abbreviate the names of the leaf nodes; the abbreviations
are given next to the event names in Figure 5. The tree is augmented with four attributes:
#S, TI, PM , and PT . The attributes are written in italic.

For the sake of clarity we have only included four attributes in the tree. Attribute #S is
a multiplicity attribute which tracks the number of occurrences of the session start event
throughout the entire election process. Attribute TI is a time-stamp attribute that tracks
the time-stamps of all initialized events that are logged during the Initialization stage. PM
and PT are constraint attributes. PM is defined for the All node of the tree, and restricts
the session start event to occur between 0 and 3 times: All.PM = 0 ≤ All.#S ≤ 3. PT
is defined for the Init node of the tree, and restricts the time for all initialized events in
the Initialization stage to occur between 0:00 on 10-20-12 and 11:59 on 10-30-12: Init.PT
= (∀t ∈ Init.T I, 0:00 10-20-12 ≤ t ≤ 11:59 10-30-12). The attributes are synthesized
throughout the tree as described in the previous section.

Remark. The semantic analysis presented above relies on semantic attributes and con-
straints to recognize non-compliant traces. Programming languages do rely on type systems

14

https://www.usenix.org/jets/issues/0202

48

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

Event Abbreviation Time Date

initialized init 12:00 10-20-12
download start dlstart 12:00 10-20-12
clear counters clrc 12:00 10-20-12
download end dlend 12:00 10-20-12

session start sstart 11:00 10-24-12
bal test start btest 11:05 10-24-12
ender card ender 11:07 10-24-12
totals report trep 11:10 10-24-12

prep for elect prep 11:20 10-24-12
clear counters clrc 11:20 10-24-12

session start sstart 05:30 11-06-12
zero tots report zrep 05:31 11-06-12
bal count start bcstart 08:01 11-06-12
ender card ender 20:14 11-06-12
bal count end bcend 20:14 11-06-12
totals report trep 20:14 11-06-12

Figure 5: Example Election Trace

All
#S=2

PM=True

TestPrepElect
#S=2

Elect
#S=1

trep
#S=0

bcend
#S=0

ender
#S=0

bcstart
#S=0

zrep
#S=0

sstart
#S=1

Prep
#S=0

clrc
#S=0

prep
#S=0

Test
#S=1

trep
#S=0

ender
#S=0

baltest
#S=0

sstart
#S=1

Init
#S=0

TI={12:00 10-20-12}
PT=True

dlend
#S=0
TI=∅

clrc
#S=0
TI=∅

dlstart
#S=0
TI=∅

init
#S=0

TI={12:00 10-20-12}

Figure 6: Abstract Syntax Tree (AST)

to annotate and analyze parse trees, hence, it it tempting to assess their potential for our
analysis. Given the key roles of multiplicities and timestamps in such an analysis, one must
consider so-called dependent type systems [13] to capture, within types, the critical inputs
used by the analysis. While this is certainly a feasible avenue, it is not clear that it would
significantly simplify the specification currently captured through constraints.

6.2 Notification System

The outputs of the parsing process and the semantic analysis manifest themselves through
the notification system. It includes four types of notifications: syntax errors that are is-
sued when an election trace cannot be parsed, grammar notifications, issued when deviant

15

https://www.usenix.org/jets/issues/0202

49

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

productions are triggered during parsing, multiplicity notifications, issued when a specified
event occurs too few, or too many times, and time notifications, issued in case a specified
event occurs outside of its permissible time range. Both repeat and time notifications are
generated during the semantic analysis, after the input file has been successfully parsed.

Syntax errors are rare and signify that the offending log file shows major deviations
from the expected format (suggesting an unknown software or hardware malfunction in the
voting terminal, or a failure of the memory card that stores the log). In a recent analysis of
over 500 memory cards, we have encountered only one syntax error. Once a syntax error is
encountered and the manual examination suggests that it is not due to equipment failure,
the grammar can be amended with additional productions so that similar future errors are
recognized and flagged accordingly without raising another syntax error. Analysis of syntax
errors is crucial in identifying equipment failures and/or exposing new deficiencies in the
logging system. (Instances of this are discussed in Section 7.)

Grammar notifications are issued to account for known, erroneous behavior where multi-
plicity or timing semantic constraints are violated. E.g., if the last event recorded in the log
is a bal count start event, with all the subsequent, expected events missing, a notification
is issued stating that the election has been aborted midway. All notifications carry custom
messages to concisely explain a specific, known deviation from the expected behavior.

7 New Identified Event Logging Deficiencies

The implementation of the event logging in the AV-OS terminal is known to contain several
defects and deficiencies [1]. Our systematic approach helped reveal additional issues with
the AV-OS logging. Although doing so was not among the goals of our development, we note
that it is the rigor of our approach and the comprehensiveness of our analysis that enabled
the identification of new defects and deficiencies.

Manifestations of Logging Deficiencies. Here we elaborate on the deficiencies in the AV-

OS logging system exposed by our analysis, provide examples, and discuss the ramifications.
Consider the three deviating traces shown in Figure 7. For brevity, we only show the relevant
section of a given trace. The three event traces are real—these have been recorded during
the official voting terminal use.

Event log A in Table 7 shows an election run, followed immediately by a prep for elect

event. It is possible, after an election, to reset a card to the pre-election stage. Resetting
a card is done through the supervisor functions and is recorded in the event log as a mem

card reset event entry. In Log A, however, no mem card reset is logged between the
concluded election and the prep for elect event. We have not been able to reproduce
such a log sequence using plausible scenarios, leading us to suspect that this is either an
intermittent error or unintended behavior due to a race condition. The time-stamp of the
first election indicates it was run before the official election date, during the test stage.
We have encountered several event logs suggesting that in testing the voting terminal an
election was run instead of a test election (while it can be beneficial to run an election
instead of test election during pre-election test, the current official rules require that test
election is run). This incorrect usage appears to be harmless. However, log A suggests
a machine malfunction. Not only is the mem card reset event absent from the log, we
also see that the prep for elect event is not followed by a clear counters event, thus
the next election starts with a count restarted event. This indicates that the counters
from the previous election were not zeroed, and thus the totals of this subsequent election

16

https://www.usenix.org/jets/issues/0202

50

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

are incorrect. Fortunately, in this case, the subsequent election is merely another election
run as a test election, so no election data was compromised. However, the same machine
malfunction could affect actual election counts.

Event Log A Event Log B Event Log C

10-31-12 11-03-12 11-04-08
15:38 ZERO TOT REPORT 11:05 PREP FOR ELECT 06:41 ZERO TOT REPORT

09:29 BAL COUNT START 11:05 CLEAR COUNTERS 07:00 BAL COUNT START

09:31 ENDER CARD 14:11 SESSION START 07:05 SESSION START

09:31 BAL COUNT END 11-06-12 11-04-08
10:32 TOTALS REPORT 14:26 ZERO TOT REPORT 07:06 ZERO TOT REPORT

10:33 SESSION START 15:18 BAL COUNT START 07:07 BAL COUNT START

11-01-12 15:34 BAL COUNT START 20:58 ENDER CARD

10:33 PREP FOR ELECT 20:58 BAL COUNT END

10:33 SESSION START 21:02 TOTALS REPORT

11-01-12
10:33 COUNT RESTARTED

10:34 ENDER CARD

10:34 BAL COUNT START

10:34 BAL COUNT END

10:52 TOTALS REPORT

Figure 7: Event logs causing syntax notification (A) and grammar notifications (B and C)

Event Log Type Severity Message

Log A Syntax 10 Syntax Error at line 33.

Log B Grammar 2 Two consecutive Bal count start events.

Log B Grammar 2 Election aborted before Balcountend.

Log B Date 1 PREP FOR ELECT occurred at 11:05 11-03-12.

Log B Date 2 ZERO TOT REPORT occurred at 14:26 11-06-12.

Log C Grammar 1 Zero totals report after Bal count start.

Figure 8: Notifications issued for event logs A, B, and C

This situation was identified because our system produced a syntax error notification,
as shown in Figure 8. We note that the analysis tool in [1] failed to report this log file as
non-compliant.

The analysis of event log B (Figure 7) results in two grammar and two time-stamp
notifications (Figure 8). The grammar notifications indicate that two consecutive bal count

start events occur and that the election has not been properly concluded. The bal count

start event should only occur when the first ballot is cast in an election, or if a ballot is
cast after the machine has been restarted. The latter should be preceded by a session start

and a count restarted. Log B, however does not display this sequence of events. The
consecutive bal count start events indicate another deficiency. Log B initially resulted in
a syntax error, however, the addition of an error-handling production (production 19, Figure
2) accounts for this behavior and issues an appropriate grammar notification. Time stamp
notifications indicate that two events have occurred outside of their allotted time-frame.

Log C exposes another logging system deficiency. A bal count start at 7:00 is logged,
followed by a session start and a zero totals report. The bal count start event indicates
that a ballot has been cast, while the zero totals report indicates that the counters are

17

https://www.usenix.org/jets/issues/0202

51

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

at zero. This means that casting the first ballot did not increment the counters. This event
trace occurs when the first ballot cast in an election is not recognized by the machine. The
ballot is cast and the bal count start event is logged, however, since the ballot cannot be
read, the counters are not incremented.

Discussion of Mitigations. In light of the above problems we strongly recommend that
a rigorous analysis of the AV-OS hardware and software is performed by the vendor to
determine the cause of the machine malfunction captured in log A, and the logging deficiency
in log B. Further we recommend that the training of poll officials be improved.

There is also an enhancement to the AV-OS logging system that would greatly reduce
the ambiguity in the logs. Currently it is impossible to discern whether a memory card was
used in one terminal only, or in several different terminals throughout the election process.
In fact, the established procedures implicitly require that every memory card that was used
in an election are used in at least two different terminals. First, each card is programmed on
one terminal (using the election management system), then it used with a different terminal
at the precinct during the actual election. Each precinct has two voting terminals, and any
card can be switched at any time from one terminal to the other. This causes ambiguity in
the log analysis assessment and presents the potential for masking incorrect tabulation or
improper use of the voting terminals. One way to approach this is to augment the session

start action type. The session start event is logged whenever a voting terminal with
a memory card already inserted is turned on, or when a memory card is inserted into a
terminal. Currently it is impossible to distinguish between these two scenarios because the
terminal is never identified inside the event log. Supplementing the session start event with
a paired event that records a unique voting terminal identifier would resolve the ambiguity.

8 Running the Event Trace Analysis System

The analysis tool is implemented in C++, using Bison [5], a GNU parser generator, and using
Flex [10] for lexical analysis. The grammar is an unambiguous, zero-conflict, deterministic
LR(1) grammar. In the course of the development, refinement, and regression testing of
our system we used it to analyze several thousand event logs collected in recent years from
actual elections. The performance of the system is quite good, certainly making it feasible
to rapidly analyze large numbers of event logs. In particular, running the analysis tool on a
conventional laptop, the system is able to process over 150 log files per second on average.

Case study. We review the results produced by the analyzer on a data set of 421 event
logs from the 2008 Presidential Election (these represent a total of 30% of all districts: 10%
randomly selected districts and 20% of districts that chose to participate in the audit); 279
logs were collected from AV-OS voting terminals used in the election, and 142 logs were
collected from the back-up terminals. The date and repeat notifications produced by our
tool are consistent with those reported in [1]. We now summarize selected observations.

In event logs from 19 terminals (four of these were used in the election) we observed
a mem card reset event. Resetting a memory card places it in the pre-election state.
However, the election protocol states that memory cards should not be reset. Fortunately,
all 19 cards show an election run during the test election stage. Thus this is not problematic,
since preparing for election zero the counters anyway. Nevertheless, the rules disallowing
resetting are there for a purpose. If a card were to be reset in the middle of an election,
after ballots have been cast, the counters would be zeroed and votes lost. For example, one
event log containing mem card reset events was reset on and used on the election day. The

18

https://www.usenix.org/jets/issues/0202

52

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

mem card reset event is logged less than twenty minutes before the first ballot is cast in
the election. Resetting a card on the election day should not occur under any circumstance.

In two event logs we found incomplete election sequences. Both logs end on a bal count

start event logged on the election day. All further expected event entries are missing. This
indicates that either the election was not completed properly, or that the memory card was
removed before the election was concluded. However, the cards have zero counters, thus no
ballots were cast.

Additionally, we discovered events that were not supposed to occur in post-election event
logs. The audit report events are recorded in two logs. Two logs contained upload start

events. Neither the printing of an audit report nor the upload of any data should occur
during the election process. This indicates the election procedure was not followed.

Logging system deficiencies. We have also identified new deficiencies in the event logging
system. As we already discussed earlier (and in [1]), these deficiencies result in ambiguity
and could in principle be used to mask invalid operator behavior.

Our analysis detected three event logs showing a bal count start event, followed by a
zero totals event. This exposes a deficiency in the logging system and suggests that the
first ballot cast in the election was not read correctly by the machine. It is impossible to
establish whether the ballot cast was indeed invalid, or whether the machine simply failed
to read it.

Another logging deficiency related to ballot casting was observed in one log where an
election is run during the test election stage. The (out-of-order) sequence of events for the
election is as follows: ender card, bal count start, bal count end. We have been able to
reproduce this log trace by inserting the ender card before any other ballots are cast. Such
an event sequence occurs if the first ballot cast in an election is the ender card.

While the results of our analysis confirm that in several instances election procedures
were not followed, we have found no indication of security problems or malicious intent.
However in some cases the analysis suggests software/hardware malfunction.

9 Conclusions and Future Work

Election audits are a critical procedural component of the electoral process to guarantee the
proper conduct of an election. Our work demonstrates yet again how audits can be valuable
in the forensic analysis of data collected from voting terminals used during the election.
Indeed, the audit process reveals several classes of problems ranging from voting terminal
malfunctions and defects to deviations in the recommended behaviors for system operators.
Our contributions encompass a new formalization of voting machine event logs to system-
atize a multi-layered compliance analysis that delivers detailed notifications characterizing
election traces. The event log analysis uses attributed context-free grammars, making the
system highly extensible and maintainable, and readily available for refinements that reflect
requirements for a correct conduct of an election. Additionally, our methodology led to the
identification of previously unknown deficiencies and defects in the AV-OS logging system,
further emphasizing the value of comprehensive audits.

We are currently preparing recommendations on implementing event logging systems
for voting terminals that would enable even more comprehensive audit analyses. In our
future work we will continue refining our approach and we intend to adapt the language
definition for use in other jurisdictions using similar equipment. Other research directions
prompted by our work include the exploration of machine learning as a means for automating

19

https://www.usenix.org/jets/issues/0202

53

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 2 • April 2014

www.usenix.org/jets/issues/0202

the generation of grammars, and the development of an automated approach for aligning
grammars with the requirements and expectations of other jurisdictions. Finally, we intend
to make our system available for educational and research use.

Acknowledgments. The authors thank the referees for detailed and insightful comments
that resulted in substantial improvements to our presentation.

References
[1] Antonyan, T., Davtyan, S., Kentros, S., Kiayias, A., Michel, L., Nicolaou, N., Russell, A.,

and Shvartsman, A. Automating voting terminal event log analysis. In Proceedings of the 2009
conference on Electronic voting technology/workshop on trustworthy elections (Berkeley, CA, USA,
2009), EVT/WOTE’09, USENIX Association, pp. 15–15.

[2] Antonyan, T., Davtyan, S., Kentros, S., Kiayias, A., Michel, L., Nicolaou, N. C., Russell, A.,
and Shvartsman, A. A. State-wide elections, optical scan voting systems, and the pursuit of integrity.
IEEE Transactions on Information Forensics and Security 4, 4 (2009), 597–610.

[3] Baxter, P., Edmundson, A., Ortiz, K., Quevedo, A. M., Rodŕıguez, S., Sturton, C., and Wag-
ner, D. Automated analysis of election audit logs. In Proceedings of the 2012 International Confer-
ence on Electronic Voting Technology/Workshop on Trustworthy Elections (Berkeley, CA, USA, 2012),
EVT/WOTE’12, USENIX Association, pp. 9–9.

[4] Bing, M., and Erickson, C. Extending unix system logging with sharp. In Proceedings of the
14th USENIX Conference on System Administration (Berkeley, CA, USA, 2000), LISA ’00, USENIX
Association, pp. 101–108.

[5] Bison gnu parser generator manual. Free Software Foundation http://http://www.gnu.org/software/

bison/manual/bison.html, 2013.

[6] Chomsky, N. Three models for the description of language. Information Theory, IRE Transactions
on 2, 3 (1956), 113–124.

[7] Davtyan, S., Kentros, S., Kiayias, A., Michel, L., Nicolaou, N. C., Russell, A., See, A.,
Shashidhar, N., and Shvartsman, A. A. Pre-election testing and post-election audit of optical scan
voting terminal memory cards. In Proceedings of the 2008 USENIX/ACCURATE Electronic Voting
Workshop (EVT 08), July 28-29, 2008, San Jose, CA, USA (2008).

[8] Detecting security incidents using windows workstation event logs. SANS Information, Network,
Computer Security Training, Research, Resources https://www.sans.org/reading-room/whitepapers/
logging/detecting-security-incidents-windows-workstation-event-logs-34262, 2013.

[9] Etalle, S., Massacci, F., and Yautsiukhin, A. The meaning of logs. In Proceedings of the 4th
International Conference on Trust, Privacy and Security in Digital Business (Berlin, Heidelberg,
2007), TrustBus’07, Springer-Verlag, pp. 145–154.

[10] Flex (the fast lexical analyzer). Sourceforge http://flex.sourceforge.net, 2008.

[11] Knuth, D. E. Semantics of context-free languages. Theory of Computing Systems 2, 2 (June 1968),
127–145.

[12] Marksense voting tabulator. Connecticut. Secretary of the State. http://www.ct.gov/sots/lib/sots/
legislativeservices/regulations/12_opscanusereg.pdf, 2008.

[13] Martin-Löf, P. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.

[14] Connecticut. Secretary of the State. Print.

[15] Rouillard, J. P. Refereed papers: Real-time log file analysis using the simple event correlator (sec).
In Proceedings of the 18th USENIX Conference on System Administration (Berkeley, CA, USA, 2004),
LISA ’04, USENIX Association, pp. 133–150.

[16] Sandler, D., Derr, K., Crosby, S., and Wallach, D. S. Finding the evidence in tamper-evident
logs. In Proceedings of the 2008 Third International Workshop on Systematic Approaches to Digital
Forensic Engineering (Washington, DC, USA, 2008), SADFE ’08, IEEE Computer Society, pp. 69–75.

[17] Slonneger, K., and Kurtz, B. Formal Syntax and Semantics of Programming Languages: A Lab-
oratory Based Approach, 1st ed. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[18] Voting system audit log study. California Secretary of State, Debra Bowen http://www.sos.ca.gov/

voting-systems/oversight/directives/audit-log-report.pdf, 2010.

20

https://www.usenix.org/jets/issues/0202

